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Abstract

We give a classification of polarized deformation quantizations (PDQs) on a symplectic manifold
with a (complex) polarization.

Also, we establish a formula which relates the characteristic class of a PDQ to its Fedosov class
and to the Chern class of the polarization.
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1. Introduction

Let (M,ω) be a smooth symplectic manifold,TM its complexified tangent bundle. It
is known that classes of deformation quantizations (DQs) on(M,ω) are in one-to-one
correspondence with their Fedosov classes, the elements ofω + tH2(M,C[[ t]]). The set
ω + tH2(M,C[[ t]]) may be interpreted in the following way. LetX be the set of formal
closed 2-forms onM of the formω+ tω1 + t2ω2 + · · · . Let Aut(M) be the group of formal
automorphisms ofM of the form etX, whereX = X0 + tX1 + t2X2 + · · · , Xi ∈ TM ,
is a formal vector field. Sinceω is nondegenerate, it is easy to see that the orbit of an
elementωt ∈ X under the action of Aut(M) is ωt + t · d(Γ(M, T ∗

M)). This implies that
ω + tH2(M,C[[ t]]) can be identified with the set of orbits inX under the Aut(M)-action.
Therefore, the equivalence classes of DQs on(M,ω) are in one-to-one correspondence with
the orbits inX.
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In the paper, we extend that picture to polarized deformation quantizations (PDQs).
Let (M,ω,P) be a polarized symplectic manifold (PSM), i.e.P is a Lagrangian inte-

grable subbundle of the complexified tangent bundle toM. A PDQ on(M,ω,P) is a pair
(At ,Ot), whereAt is a DQ on(M,ω), i.e.At is a sheaf of noncommutative algebras being a
deformation of the sheafC∞M of smooth functions onM, andOt is a subsheaf of commutative
t-adically complete subalgebras ofAt such thatO0 = OP, the sheaf of functions constant
alongP.

Let Y denote the set of pairs(ωt,Pt), whereωt ∈ X andPt is a polarization ofωt

such thatP0 = P. Our result is that the equivalence classes of PDQs on(M,ω,P) are in
one-to-one correspondence with the orbits inY under the Aut(M)-action. Let us describe
this correspondence more precisely.

First, we show that any PDQ is equivalent to a polarized star-product (PSP). By a PSP
we mean a triple,(C∞M [[ t]] , µt,Ot), where(C∞M [[ t]] , µt) is a star-product (SP),Ot = OPt ,
the algebra of functions fromC∞M [[ t]] constant along a deformed polarizationPt , and the
multiplicationµt satisfies the condition:µt(f, g) = fg (the usual multiplication) forf ∈ Ot ,
g ∈ C∞M [[ t]].

Further, we assign to any PSP(C∞M [[ t]] , µt,Ot) a pair (ωt,Pt) ∈ Y in the following
way. We putPt = POt , the sheaf of formal vector fields annihilatingOt . The formωt is
equal, locally, to

∑
i dyi ∧ dxi, wherexi ∈ Ot , yi ∈ C∞M [[ t]], i = 1, . . . , (1/2)dimM, are

Darboux coordinates with respect to [, ] = [, ]µt , the commutator ofµt ; namely, [xi, xj] =
[yi, yj] = 0, [yi, xj] = δij. It turns out thatωt is well defined, i.e. does not depend on the
choice of local Darboux coordinates. Denote the constructed map from PSPs toY by τ.

The mapτ turns out to descend to an isomorphism between the set of classes of PDQs
and the set [Y] of orbits inY. So, we obtain the following commutative diagram of maps:

{PSPs} τ→ Y

↓ ↓
{classes of PDQs} → [Y],

(1.1)

where the left downward arrow is an epimorphism and the bottom arrow is an isomorphism
of sets.

We prove that the top arrowτ is an epimorphism with the following properties:

(1) Two PSPs are equivalent if and only if their images with respect toτ lie on the same
orbit.

(2) Two PSPs(C∞M [[ t]] , µt,Ot) and(C∞M [[ t]] , µ̃t, Õt) have the same image with respect to
τ if and only ifOt = Õt and [, ]µt = [, ]µ̃t

.
(3) Let (ωt,Pt) = τ(C∞M [[ t]] , µt,Ot). Then, the 2-form

θt = ωt + t

2
tr(∇2|Pt ) (1.2)

represents the Fedosov class of the SP(C∞M [[ t]] , µt). Here∇ is a connection onM
preservingωt , Pt , and flat onPt alongPt . We prove that such a connection always
exists and for it tr(∇2|Pt ) belongs toΓ(M, dP⊥

t ).
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By definition,ωt belongs toω + tΓ(M, dP⊥
t ). Hence, it follows from(1.2) that the

Fedosov class of the SP(C∞M [[ t]] , µt) can be represented by a 2-form belonging toω +
tΓ(M, dP⊥

t ), as well. In particular, both(M,ωt,Pt) and(M, θt,Pt) are formal PSMs that
are deformations of(M,ω,P).

Another consequence of(1.2) is the following one. LetAt be a DQ on(M,ω). Suppose
its Fedosov class clF(At) is represented by a 2-formθt that has a polarizationPt . ThenAt

can be extended to a PDQ(At ,Ot), i.e. there exists a commutative subalgebraOt ⊂ At

isomorphic toOPt .
There is the following interpretation of the image [ωt ] of elementωt in theC[[ t]]-module

Γ(M, dP⊥
t )/d(Γ(M,P⊥

t )). LetF(µt,Ot) = {a ∈ C∞M [[ t]] ; [a,Ot ]µt ⊂ Ot}. Then, there is
the following exact sequence ofOt-module and Lie algebra sheaves:

0 → Ot → F(µt,Ot) → Der(Ot) → 0. (1.3)

According to Beilinson and co-workers[3,4],F(µt,Ot) is called anOt-extension of Der(Ot).
Equivalence classes of such extensions are described by their extension classes that are ele-
ments ofΓ(M, dP⊥

t )/d(Γ(M,P⊥
t )). We show that [ωt ] is just the extension class of(1.3).

Analogously,−[tr(∇2|Pt )] is the extension class of theOt-extension

0 → Ot → T̃det(Pt ) → Der(Ot) → 0, (1.4)

whereT̃det(Pt ) is the sheaf ofOt-differential operators of order at most one on theOt-line
bundle det(Pt).

Note that−tr(∇2|Pt ) divided by 2π
√−1 represents the first Chern class ofP [15].

Therefore, formula(1.2) gives a relation of the extension class of a PDQ to its Fedosov
class and to the Chern class of the polarization.

Among results related to ours we mention the following.
In [22], Reshetikhin and Yakimov considered the case of a real polarization onM defined

by a Lagrangian fiber bundleM → B.
In [12], Karabegov constructed SPs with separation of variables on Kähler manifolds. This

case corresponds to two polarizations onM defined by holomorphic and anti-holomorphic
vector fields. In the case of quantization on a Kähler manifold with separation of variables
the class ofωt in H2(M,C[[ t]]) coincides with the class defined by Karabegov in[12].
A formula relating the Karabegov and Fedosov classes in the case of Kähler manifolds is
found in [13], see also[14,19]. In the general case of the quantization with separation of
variables the analogous formula was conjectured in[1].

An important case of PSMs is the cotangent bundle to a smooth manifold with the natural
symplectic structure. Polarized quantizations on such manifolds, the so-called standard-
ordered SPs, was investigated by Bordemann et al. in[6], Bordemann et al. in[8] and
Pflaum in[20].

Our proof of the existence of a PSP associated with any orbit inYuses the Fedosov method
adapted for the case with polarization. The analogous method was applied by Bordemann
and Waldmann[7], for constructing a quantization with separation of variables on a Kähler
manifold.

Another approach to proving a formula relating the Fedosov and extension classes is
found in[5]; that approach uses the Deligne classes of DQs[9]. Unfortunately, there was a
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deficiency in proving Lemma 4.3 of[5] relating the extension and Deligne classes, however,
the proof can be modified using arguments of the present paper.

The paper is organized as follows.
In Section 2, we study cohomologies of the differential Hochschild complex onM in

presence of a distribution. Also, we prove a version of the Kostant–Hochschild–Rosenberg
theorem for functions constant along a distribution. We use these results latter in proving
that any PDQ is equivalent to a PSP.

In Section 3, we introduce a notion ofC-symplectic manifold, which is convenient for our
consideration. This notion is a generalization of the notion of symplectic manifold. Namely,
we suppose that symplectic formω on aC-symplectic manifold is acomplex one and, locally,
there existcomplex Darboux coordinates with respect toω. For a usual symplectic manifold,
whenω is real, such coordinates exist by the Darboux theorem. In this section, we establish
some facts onC-symplectic manifolds with polarization. By a polarization ofω we mean
a Lagrangian subbundle,P, of thecomplexified tangent bundle onM such that, locally on
M, there exist Darboux coordinatesxi, yi, i = 1, . . . , (1/2)dimM, wherexi ∈ OP for
all i. Thus, (pseudo-) Kähler manifolds as well as purely real polarizations are included in
our consideration. Note that from an analog of “Dolbeault Lemma” proved in[21] one can
derive sufficient conditions forP to be a complex polarization ofω.

In Section 4, we study properties of formal (or deformed) PSMs. InSection 5, we prove
the existence of a polarized symplectic connection on a formal PSM,(M,ωt,Pt), and with
the help of such a connection we introduce a characteristic class of a PSM.

In Section 6, we prove some technical statements related to deformations of Poisson
brackets onM. Such deformations appear, in particular, as commutators of SPs.

In Section 7, we study properties of PDQs. In particular, we prove the important fact that
any PDQ is equivalent to a PSP.

In Section 8, we define the extension class of a PDQ. Besides, we assign to any PSP an
element ofY, and to any class of PDQs an orbit inY. We prove that the later assignment is
a monomorphism that, actually, is an isomorphism, as we show in the next section.

In Section 9, we prove that each element ofY corresponds to a PSP. To this end, we adapt
the Fedosov method for constructing a PSP corresponding to a given pair(ωt,Pt) ∈ Y.
By this method, a polarized symplectic connection,∇, extends to a Fedosov connection on
the bundle of Weyl algebras onM. This connection has two scalar curvatures: the Weyl
curvature,θt , and the Wick curvature that turns out to be justωt . We show that these curva-
tures differ from each other by(t/2) tr(∇2|Pt ), which immediately proves(1.2). Note that
in order to consider Weyl and Wick curvatures simultaneously on the same bundle of Weyl
algebras, we realize latter as a quotient of the tensor algebra over the cotangent bundle to
M. This realization was used in[10] to give an algebraic version of Fedosov’s construction.

In Section 10, we formulate the main theorem collecting the results of the paper and give
some corollaries.

2. Complex distributions

For a smooth manifoldM, we will denote byC∞M the sheaf ofcomplex valued smooth
functions onM and byT CM = TM ⊗R C the complexified tangent bundle onM.
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We say that a set of smooth functionsxi, i = 1, . . . ,dimM, given on an open subset
U ⊂ M form a system of (complex) coordinates onU, if dxi are linearly independent at
each point ofU.

Since any 1-form onU can be uniquely written as
∑

i ai dxi, one can define vector fields
∂/∂xi ∈ T CM in the following way. If f is a function onU and df = ∑

i ai dxi, then
(∂/∂xi)f = ai.

LetQbe a subbundle of a complex vector bundleEonM. We denote byQ⊥ the subbundle
of E∗, the complex dual toE, orthogonal toQ. If sectionsei form a local frame inQ, we
set(ei)⊥ = Q⊥.

A (complex) distribution on a manifoldM is a subbundle ofT CM .

Definition 2.1. A distributionP is said to beintegrable if, locally onM, there exist (complex
valued) functionsf1, . . . , fk such that df1, . . . ,dfk give a local frame inP⊥, i.e. dfi are
linearly independent at each point andP = (dfi)⊥.

An integrable distributionP is obviously involutive, i.e. [P,P] ⊂ P.
Let P be an integrable distribution onM. We will denote byOP the sheaf of functions

onM constant alongP, i.e.f ∈ OP if and only if Xf = 0 for any vector fieldX ∈ P.

2.1. The Kostant–Hochschild–Rosenberg theorem in presence of a distribution

Let M be a smooth manifold. LetDn be the sheaf ofn-differential operators onM and
D• the corresponding Hochschild complex with differential d. Let∧•T be the complex of
sheaves of polyvector fields onM with zero differential,T = T CM .

There is the following “smooth” version of the Kostant–Hochschild–Rosenberg theorem
[16, Theorem 4.6.1.1.].

Proposition 2.2. The natural embedding

∧•T→ D• (2.1)

is a quasiisomorphism of complexes. Moreover, if ϕ ∈ Dn is a Hochschild cocycle, then its
alternation Alt(ϕ) is a polyvector field of ∧•T cohomological to ϕ.

Proof. Arguments of this proof will be used also in proving the next proposition. The
proposition is local onM, so it is enough to prove it replacingM by an open setU ⊂ M

having complex coordinatesxi, i = 1, . . . ,dimM. Any differential operator onU may be
uniquely presented as a polynomial in∂/∂xi with coefficients being smooth functions on
U. Hence,D• coincides overU with the complexC•(T ). Here, for any vector bundleE,
we denote byC•(E) the complex(⊗•Sym(E),d) with differential of the form

d : ⊗nSym(E) → ⊗n+1 Sym(E),

d(a1 ⊗ · · · ⊗ an) = 1 ⊗ a1 ⊗ · · · ⊗ an +
n∑

i=1

(−1)ia1 ⊗ · · · ⊗ #ai ⊗ · · · ⊗ an

+ (−1)n+1a1 ⊗ · · · ⊗ an,
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where# is the comultiplication in the symmetric algebra Sym(E) generated by the rule
#(a) = a ⊗ 1 + 1 ⊗ a for a ∈ E.

One has the following well-known statement (see, for example, the proof of Theorem
4.6.1.1. in[16]).

Lemma 2.3. Let E be a line bundle over M. Then the conclusion of Proposition 2.2holds
for the map

∧•E → C•(E). (2.2)

Applying this lemma toE = T we prove the proposition.

Let (M,P) be a smooth manifold with integrable distribution. We call ann-chainν ∈ Dn

polarized if ν(a1, . . . , an) = 0 whenevera1, . . . , an ∈ OP. We callν strongly polarized, if
ν(a1, . . . , an) = 0 whenevera1, . . . , an−1 ∈ OP andan ∈ C∞M .

Proposition 2.4. Let ν ∈ D2 be a polarized Hochschild 2-cochain such that dν is strongly
polarized. Then, there exists a polarized differential operator b such that ν+ db is strongly
polarized.

Proof. Since subsheaves of polarized and strongly polarized cochains are subsheaves of
C∞M -modules, it is enough to prove the proposition locally onM. Thus, letU be an open set
with coordinatesxi, i = 1, . . . ,dimM such that∂/∂xi, i = 1, . . . , k, form a local frame in
P. LetQ be the subbundle ofT generated by∂/∂xi, i = k+1, . . . , n. Thus,T = Q⊕P onU.
There is the natural isomorphism of complexC•(T ) with the tensor product of complexes
C•(Q,P) = C•(Q) ⊗ C•(P), so that we can identifyC•(T ) with C•(Q,P). Similarly, we
identify the complex∧•(T ) with ∧•(Q,P) = ∧•(Q) ⊗ ∧•(P).

Thus, the map(2.2)generates the map of complexes

∧•(Q,P) → C•(Q,P). (2.3)

ComplexC•(Q,P) decomposes obviously into a direct sum of subcomplexesC•k,l(Q,P),
whereC•k,l(Q,P) consists of elements of total degreek with respect toP and l with re-
spect toQ. The same is true forΛ•(Q,P). Due toProposition 2.2, the map(2.3) is a
quasiisomorphism of bigraded complexes.

It is clear that an element ofCn(Q,P) is polarized if it is a sum of tensor monomials
having degree> 0 with respect toP. An element ofCn(Q,P) is strongly polarized if it is
a sum of tensor monomials of the forma1 ⊗ · · · ⊗ an, wherea1 ⊗ · · · ⊗ an−1 is polarized.

Thus, we may suppose that the givenν is a polarized Hochschild cochain onU belonging
to C2(Q,P). It can be written asν = ν0 + ν1, whereν0 = ∑

(ai ⊗ ci), the sum of all tensor
monomials inν such thatai ∈ C1(Q), ci ∈ C1(P). Let us setb = ∑

aici. It is clear that
ν′ = ν+db does not contain tensor monomials of that type. The proposition will be proved
if we show thatν′ is strongly polarized. Let us prove this.

Supposeν′ = ν′
0 + ν′

1, whereν′
0 is not strongly polarized andν′

1 is strongly polarized.
Thenν′

0 has the form

ν′
0 =

∑
(ai ⊗ bi)(1 ⊗ ci), (2.4)
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where(ai⊗bi) ∈ ⊗2 Sym(Q), and elementsci ∈ Sym(P)are linearly independent. Besides,
bi are of degree> 0.

The element dν = dν′ = dν′
0+dν′

1 is strongly polarized by hypothesis of the proposition,
dν′

1 being the coboundary of a strongly polarized elementν′
1 is strongly polarized, too. All

summands of dν′
0 with first two factors being of degree 0 with respect toP are(d(ai ⊗bi)+

ai ⊗ bi ⊗ 1)(1 ⊗ 1 ⊗ ci). These summands are not strongly polarized. Hence,
∑

i(d(ai ⊗
bi) + ai ⊗ bi ⊗ 1)(1 ⊗ 1 ⊗ ci) = 0. Since elements 1⊗ 1 ⊗ ci are linearly independent,
it follows that d(ai ⊗ bi) = −ai ⊗ bi ⊗ 1 for all i, which is only possible ifai ⊗ bi = 0
for all i. Equality(2.4) implies thatν′

0 = 0. Therefore,ν′ is equal toν′
1 which is strongly

polarized. �

2.2. Differential operators in presence of a distribution

Let (M,P) be a smooth manifold with integrable distribution. Letzi, yj be complex
coordinates on an open setU ⊂ M such thatP = (dzi)⊥. Vector fields∂/∂yj form a local
frame inP, since, by definition,OP consists of functionsa ∈ C∞M such that da has the form∑

i ai dzi. Since da is closed,∂ai/∂yj = 0 for all i, j, which implies thatai = ∂a/∂zi ∈ OP
for all i.

LetQ be a subbundle inT = T CM generated by∂/∂zj, so thatT = Q⊕ P onU.
The vector bundleT/P may be considered as the sheaf of derivations fromOP to C∞M ,

Der(OP, C∞M). Locally, such derivations can be presented in the form
∑

bi∂/∂zi, bi ∈ C∞M ,
i.e. as sections ofQ. Denote by Der(OP) theOP-submodule of Der(OP, C∞M) consisting
of operators which takeOP to itself. It is clear that Der(OP, C∞M) = C∞M ⊗OP Der(OP).
Locally, elements of Der(OP) have the form

∑
i ai∂/∂zi, ai ∈ OP.

Let ∧•(T/P) denote the complex of sheaves of polyvector fields onM fromOP to C∞M .
LetD•(OP, C∞M) denote the restriction of the Hochschild complexD• toOP. Hence, the

sheafDn(OP, C
∞
M) may be considered as the sheaf ofn-differential operators fromOP to

C∞M . Locally, elements ofD1(OP, C
∞
M), the sheaf of differential operators fromOP to C∞M ,

can be presented as polynomials in∂/∂zi with smooth coefficients. Therefore, locally on
M, complexD•(OP, C∞M) is isomorphic to the complexC•(Q) (see previous subsection).

We will need the following version of the Kostant-Hochschild–Rosenberg theorem.

Proposition 2.5. The natural embedding

∧•(T/P) → D•(OP, C∞M) (2.5)

is a quasiisomorphism of complexes. Moreover, if ϕ ∈ Dn(OP, C
∞
M) is a cocycle, then

Alt(ϕ) is a polyvector field of ∧n(T/P) cohomological to ϕ.

Proof. As follows from above, embedding(2.5) is locally isomorphic to the embedding

∧•Q→ C•(Q).

Now the proposition follows fromLemma 2.3whenE = Q. �

Remark. All conclusions ofPropositions 2.2, 2.4 and 2.5remain true for global sections
of the corresponding sheaves, since they are sheaves ofC∞M -modules.
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2.3. Differential forms in presence of a distribution

Let (M,P) be a smooth manifold with integrable distribution.
The sheafP⊥ = (T/P)∗ of differential forms onM which being applied to vector fields

fromP give zero, may be written asC∞M dOP.
DenoteΩ1

OP
= HomOP(Der(OP),OP), the sheaf of 1-forms onOP. It is clear that

Ω1
OP

= OP dOP.

Denote byΩ1cl
OP

the subsheaf of closed forms ofΩ1
OP

.

Lemma 2.6.

(a) The sequence of sheaves

0 → C → OP
d→Ω1cl

OP
→ 0 (2.6)

is exact.
(b) The sequence of sheaves

0 → Ω1cl
OP

→ P⊥ d→dP⊥ → 0 (2.7)

is exact.

Proof. Let functionszi, yj form a local basis onM andP = (dzi)⊥. Let us prove (a). It
is sufficient to establish the exactness at the third term of(2.6). Letα = ∑

i ai dzi ∈ Ω1cl
OP

.
Sinceα is closed, there exists, locally,f ∈ C∞M such that df = α. Sinceα does not contain
terms of the formg dyj, one has∂f/∂yj = 0 for all j. Hence,f ∈ OP.

To prove (b), it is sufficient to establish the exactness atP⊥. To this end, supposeβ =∑
i bi dzi ∈ P⊥ and dβ = 0. Sinceβ is closed,∂bi/∂yj = 0 for all i, j. This means that all

bi ∈ OP. Thus,β ∈ Ω1
OP

and closed, i.e.β ∈ Ω1cl
OP

. �

Proposition 2.7. Let (M,P) be a smooth manifold with an integrable distribution. Then,
there is a natural isomorphism

H1(M,Ω1cl
OP

)� Γ(M, dP⊥)
d(Γ(M,P⊥))

. (2.8)

Proof. This is an immediate consequence of the cohomological exact sequence for(2.7)
and ofHi(M,P⊥) = 0 for i > 0. �

3. C-symplectic manifolds and their polarizations

3.1. C-symplectic manifolds

Definition 3.1. By aC-symplectic manifold we mean a pair(M,ω), whereM is a smooth
manifold andω a closed nondegenerate complex 2-form onM satisfying the follow-
ing condition: each point ofM has a neighborhoodU and complex coordinatesxi, yi,
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i = 1, . . . , (1/2)dimM, onU such that the formω onU can be presented as

ω =
∑
i

dyi ∧ dxi. (3.1)

If the formω is real, such a presentation is possible by the Darboux theorem. One has

{xi, xj} = {yi, yj} = 0, {yi, xj} = δij (3.2)

for all i, j, where{·, ·} is the Poisson bracket inverse toω. We call such functionsxi, yi
Darboux coordinates with respect toω (or {·, ·}).

In what follows we only deal withC-symplectic manifolds, so we simply call them
symplectic ones.

3.2. Polarization

Definition 3.2. Let (M,ω) be a symplectic manifold. We call a (complex) distributionP
onM a polarization ofω, if, locally, there exist (complex) Darboux coordinates,xi, yi, with
respect toω such thatP = (dxi)⊥, i.e.xi ∈ OP.

We call the triple(M,ω,P) a PSM.

It follows that a polarization ofω is, in particular, an integrable distribution and a La-
grangian subbundle with respect toω.

Proposition 3.3. Let (M,ω,P) be a PSM. Then ω ∈ Γ(M, dP⊥).

Proof. Let xi, yi be local Darboux coordinates onM such thatP = (dxi)⊥ andω =∑
dyi ∧ dxi. Then, locally,ω = d(

∑
yi dxi) and

∑
yi dxi ∈ P⊥. �

Proposition 3.4. Let (M,ω,P) be a PSM. Then,OP is a maximal commutative Lie subal-
gebra in C∞M with respect to the Poisson bracket ω−1.

Proof. It follows fromDefinition 3.2that, locally, the bracketω−1 can be written in the form

{·, ·} =
∑
i

∂̄i ∧ ∂i, (3.3)

where∂i = {yi, ·}, ∂̄i = {·, xi}. The moduleOP consists, locally, of elementsg ∈ C∞M such
that {g, xi} = ∂̄ig = 0 for all i. Putting two such elementsg1, g2 in (3.3), we obtain that
{g1, g2} = 0. Therefore,OP is commutative. The maximality ofOP is obvious. Indeed, if
a ∈ C∞M commutes withOP, then, in particular,{xi, a} = 0 for all i, hencea ∈ OP. �

4. Deformations of a PSM

4.1. Formal everything

Let t be a formal parameter. We will consider onM formal functions, formal vector
fields, formal forms, etc., which are elements ofC∞M [[ t]], T CM [[ t]], ∧k(T CM )∗[[ t]], etc. In
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the formal case, all sheaves onM and their morphisms will be sheaves and morphisms of
C[[ t]]-modules.

LetB be a sheaf onM. We call the mapσ : B[[ t]] → B, b0 + tb1 +· · · → b0, thesymbol
map. For a subsheafFt ⊂ B[[ t]], we denoteF0 = σ(Ft) ⊂ B.

LetFt be a subsheaf ofB[[ t]]. We callFt a t-regular subsheaf if it is complete int-adic
topology, andtb ∈ Ft , b ∈ B[[ t]] implies b ∈ Ft .

For at-regular subsheafFt ⊂ B[[ t]] the natural mapFt/tFt → F0 is an isomorphism.
In this case we callFt a deformation of F0.

Let B be a vector bundle onM. Then, a subsheafFt ⊂ B[[ t]] is called a (formal)
subbundle, if it is at-regular subsheaf ofC∞M [[ t]]-modules.

All notions and statements above carry over to the formal case.
For example, a deformation of a distributionP onM is a subbundle,Pt , of T CM [[ t]] such

thatP0 = P. A system of (formal) coordinates on an open setU ⊂ M is a set of formal
functionsxi = xi0 + tx1i + · · · , i = 1, . . . ,dimM, C[[ t]]-linearly independent at each
point ofU. A formal PSM is a triple(M,ωt,Pt), whereωt is a formal symplectic form on
M (i.e. a closed 2-form of the formωt = ω0 + tω1 + · · · with nondegenerateω0 ) andPt

is a polarization ofωt in sense ofDefinition 3.2, i.e. locally, there exist formal Darboux
coordinatesxi, yi with respect toωt such thatPt = (dxi)⊥.

We say that(M,ωt,Pt) is a deformation of a PSM(M,ω,P), if (M,ω0,P0) = (M,ω,P).
The following proposition, which follows fromPropositions 6.1 and 6.2, shows that any

deformation of (polarized) symplectic manifold is a formal (polarized) symplectic manifold.

Proposition 4.1.

(a) Let ωt be a formal closed 2-form. If ω0 admits, locally, Darboux coordinates, then there
exist their lifts being formal Darboux coordinates for ωt .

(b) Let Pt be an integrable distribution and Lagrangian subbundle of T CM [[ t]] with respect
to ωt . Let P0 be a polarization of ω0. Then Pt is a polarization of ωt .

4.2. Local structure of deformed polarizations

It is clear that formal vector fieldstX1+t2X2+· · · ∈ tT CM [[ t]] form a sheaf of pro-nilpotent
Lie algebras. Therefore, elementsetX,X ∈ T CM [[ t]], form a sheaf of pro-unipotent Lie groups
of formal automorphisms ofM.

Let xi be formal coordinates onU andai, i = 1, . . . ,dimM, arbitrary formal functions
onU. Then there exists a derivation,D, of C∞M [[ t]] that takesxi to ai. Such a derivation is
D = ∑

i ai∂/∂xi. This implies the following lemma.

Lemma 4.2. Let xi, x′
i, i = 1, . . . ,dimM, be two systems of formal coordinates on an open

set U ⊂ M, and xi = x′
i modt. Then, there exists a formal automorphism on U that takes

xi to x′
i.

Proposition 4.3.

(a) Let Pt be an integrable distribution on M that is a deformation of a distribution P.
Then, locally, there exists a formal vector field, X, such that etX gives an isomorphism
Pt with P[[ t]].
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(b) Let (M,ωt,Pt) be a deformation of a PSM (M,ω,P). Then, each point of M has a
neighborhood, U, and a formal vector field X on U such that etX gives an isomorphism
of (M,ωt,Pt)|U with the trivial deformation (U, ω,P[[ t]]).

Proof.

(a) Locally, there exist functionsxit = xi0 + txi1 + · · · , i = 1, . . . , k, such thatPt =
(dxit)

⊥ and henceP = (dxi0)⊥. Let us add functionsx(k+1)0, . . . , xn0 in such a way
that allxi0, i = 1, . . . , n, form a coordinate system. According toLemma 4.2, there
exists a formal automorphism which takes coordinatesxit, i = 1, . . . , k, xj0, j =
k+1, . . . , n, to coordinatesxi0, i = 1, . . . , n. This formal automorphism gives obviously
an isomorphism ofPt ontoP[[ t]].

(b) Let U be an open set inM where Darboux coordinatesxit = xi0 + txi1 + · · · ,
yit = yi0 + txi1 + · · · , i = 1, . . . , (1/2)dimM, exist, andPt = (dxit)

⊥. Then,xi0,
yi0 are Darboux coordinates with respect toω0 = ω such thatP = (dxi0)⊥. By
Lemma 4.2, there exists a formal vector fieldX on U such that the formal automor-
phismetX takes coordinatesxit, yit to xi0, yi0. This etX satisfies the conclusion of the
proposition. �

LetP be an integrable distribution. Denote byOP the sheaf of functions constant along
P. LetPt be a deformation ofP. It follows from the previous proposition that, locally, the
pair (C∞M [[ t]] ,OPt ) is isomorphic to the pair(C∞M [[ t]] ,OP[[ t]]), henceOPt is a t-regular
subalgebra ofC∞M [[ t]]. One holds the following inverse statement.

Proposition 4.4. LetP be an integrable distribution onM. LetOt be a t-regular subalgebra
of C∞M [[ t]] such that O0 = OP. Then, there exists a deformation, Pt , of P such that Ot =
OPt .

Proof. Let us prove that dOt ⊂ (T CM )∗[[ t]] is t-regular. Letb ∈ (T CM )∗[[ t]] and tb ∈ dOt .
Then, there existsa = a0 + ta′ ∈ Ot such that da = tb. It follows thata0 is a constant,
so ta′ ∈ Ot . SinceOt is t-regular,a′ ∈ Ot , too. Therefore,b = da′ ∈ dOt , so that dOt

is a t-regular submodule in(T CM )∗[[ t]]. This implies thatC∞M [[ t]] dOt is a subbundle in
(T CM )∗[[ t]], soPt = (dOt)

⊥ is a subbundle ofT CM [[ t]]. Moreover,P0 = P. Therefore,Pt

is a deformation ofP. One hasOt ⊂ OPt . Since these two subalgebras aret-regular and
coincide att = 0, one hasOt = OPt . �

The last proposition gives a one-to-one correspondence between deformations of an
integrable distributionP and deformations ofOP.

4.3. Action of formal automorphisms on a symplectic form

Let (M,ωt) be a formal symplectic manifold,T = T CM .
The well-known formula for the Lie derivative

LX = i(X)d + di(X)



J. Donin / Journal of Geometry and Physics 48 (2003) 546–579 557

implies

LXωt = dα(X), (4.1)

whereα : T[[ t]] → T ∗[[ t]] is a map defined byX �→ ωt(X, ·). Sinceα is an isomorphism,
we have the following lemma.

Lemma 4.5. The orbit of ωt by the action of the group of formal automorphisms etX,
X ∈ Γ(M, T[[ t]]), is ωt + t d(Γ(M, T ∗[[ t]])).

The lemma shows that the orbit ofωt corresponds to the cohomology class ofωt in
ω0 + tH2(M,C[[ t]]).

Let (M,ωt,Pt) be a formal PSM andX ∈ Γ(M,Pt). Sinceα(Pt) = P⊥
t , one has

LXωt = dα(X) ∈ Γ(M, dP⊥
t ). The argument as above implies.

Lemma 4.6. By the action of the group generated by etX, X ∈ Γ(M,Pt), the orbit of ωt is
ωt + t d(Γ(M,P⊥

t )).

The lemma shows that the orbit ofωt corresponds to the cohomology class ofωt in
Γ(M, dP⊥

t )/d(Γ(M,P⊥
t )).

5. Polarized symplectic connection and characteristic class of a PSM

5.1. Polarized symplectic connection

Let (M,ω,P) be a (formal) PSM. Denote, for shortness,T = T CM [[ t]].

Definition 5.1. We call a connection,∇, onM aP-symplectic connection if

(a) it preservesω and is torsion free, i.e. is a symplectic connection;
(b) it preservesP, i.e.∇X(P) ⊂ P for anyX ∈ T;
(c) it is flat onP alongP, i.e. for anyX, Y ∈ P one has(∇X∇Y −∇Y∇X−∇[X,Y ])(P) = 0.

Proposition 5.2. Let (M,ω,P) be a (formal) PSM. Then, there exists a P-symplectic con-
nection on M.

Proof. Let functionsa1, . . . , a2n, 2n = dimM, form local Darboux coordinates on an open
setU ⊂ M and be such thatai ∈ OP for i = 1, . . . , n. LetXi = Xai be the corresponding
Hamiltonian vector fields. Then, vector fieldsXi, i = 1, . . . , n, form a local frame inP.
Also, allXi commute and form a local frame inT. Let∇ be the standard flat connection on
U associated with coordinatesai. This connection is defined onU by the rule∇XiXj = 0.

It is easy to see that∇ is aP-symplectic connection onU. Moreover, sinceXf ∈ P is
equivalent to df ∈ P⊥, the connection∇ satisfies the following property for Hamiltonian
vector fields:

∇Xf
Xg = 0 for Xf , Yg ∈ P. (5.1)

Now, let us prove the existence of a global connection.
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Let{Uα} is an open covering ofM such that on eachUα there is aP-symplectic connection
∇α as above. Then∇α−∇β defined onUα∩Uβ form aČech cocycleψα,β ∈ HomC∞M [[ t]] (T⊗
T, T ), ψα,β(X, Y ) = ∇αXY − ∇βXY .

Elementsψα,β satisfy the following properties. As follows from(5.1),

ψα,β(X, Y) = 0 for X, Y ∈ P. (5.2)

Since all ∇α are torsion free,ψα,β are symmetric. Since all∇α preserveP, one has
ψα,β(X, Y) ∈ P for Y ∈ P.

In addition,ψα,β considered as elements from Hom(T,Hom(T, T )), X �→ ψα,β(X, ·),
belong to Hom(T, sp(T )), wheresp(T ) consists of endomorphisms ofT preservingω.

Since all the properties above areC∞M [[ t]]-linear, one can find tensorsψα ∈ Hom(T⊗T, T )
satisfying all of them and such thatψα − ψβ = ψα,β. Then∇ = ∇α − ψα = ∇β − ψβ is a
globally defined connection. Flatness of∇ onP alongP follows from the fact that for all
α tensorsψα satisfy property(5.2), i.e.ψα(X, Y) = 0 forX, Y ∈ P. Also,∇ is torsion free
because allψα are symmetric. Therefore,∇ satisfies the proposition. �

5.2. Characteristic class of a PSM

Let∇ be aPt-symplectic connection on a formal PSM(M,ωt,Pt). Let us denote by∇2|Pt
the curvature of∇ restricted toPt . Then, tr(∇2|Pt ) is a closed 2-form onM representing,
up to a constant factor, the first Chern class ofP0.

Lemma 5.3. Let ∇ be aPt-symplectic connection. Then tr(∇2|Pt ) belongs toΓ(M, dP⊥
t ). If

∇1 is anotherPt-symplectic connection, then tr(∇2
1|Pt ) differs from tr(∇2|Pt ) by an element

of d(Γ(M,P⊥
t )).

Proof. Follows from flatness ofPt alongPt with respect to the connections. �

The lemma allows us to consider the element ofΓ(M, dP⊥
t )/d(Γ(M,P⊥

t )) represented
by the form tr(∇2|Pt ), where∇ is aPt-symplectic connection, as a characteristic class of
the PSM(M,ωt,Pt).

Due toProposition 2.7, one can also consider this class as an element ofH1(M,Ω1cl
OPt

).

6. Deformations of Poisson brackets

In this section, we prove three technical statements which we use through the paper.
Letπ0 = {·, ·} be a nondegenerate Poisson bracket on a smooth manifoldM of dimension

2n. We say that a formal sumπt = π0 + tπ1 + · · · is a deformation ofπ0 if all πi are
bidifferential operators onM andπt defines a Lie algebra structure on the sheafC∞M [[ t]].
We will also denoteπt by [·, ·]. Let us recall the symbol mapσ : C∞M [[ t]] → C∞M , a =
a0 + ta1 + · · · �→ a0. We calla a lift of a0. We say that functionŝxi, ξ̂i, i = 1, . . . , n, on an
open setU ⊂ M form Darboux coordinates with respect to [·, ·], if [ x̂j, x̂k] = [ξ̂j, ξ̂k] = 0,
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[ξ̂j, x̂k] = δjk for all j, k. It is clear that then functionsxi = σ(x̂i), ξi = σ(ξ̂i) form Darboux
coordinates with respect to{·, ·}.

Proposition 6.1. Let [·, ·] be a deformation of a Poisson bracket {·, ·} on M. Let x̂(i)1 , . . . ,

x̂
(i)
n , ξ̂

(i)
1 , . . . , ξ̂

(i)
n ∈ C∞M [[ t]], i = 1,2, be two systems of Darboux coordinates with respect

to [·, ·] on a contractible open set U in M satisfying

σ(x̂
(1)
j ) = σ(x̂

(2)
j ), σ(ξ̂

(1)
j ) = σ(ξ̂

(2)
j ).

Then, there exists B ∈ C∞M [[ t]] on Usuch that the automorphism Φ = exp(t · ad(B)), where

ad(B) = [B, ·], satisfies Φ(x̂
(1)
j ) = x̂

(2)
j and Φ(ξ̂

(1)
j ) = ξ̂

(2)
j .

Proof. LetB0 = 0. Assume thatBm is such that the automorphismΦm = exp(t · ad(Bm))

satisfies the conclusion of the proposition modulotm+1. This assumption is valid for
m = 0.

Then, x̂(2)j = Φm(x̂
(1)
j ) + tm+1yj modtm+2, ξ̂(2)j = Φm(ξ̂

(1)
j ) + tm+1ηj modtm+2 for

suitableyj, ηj ∈ C∞M . The Darboux commutation relations forx̂(i)1 . . . , x̂
(i)
n , ξ̂

(i)
1 , . . . , ξ̂

(i)
n

imply that the functionsy1, . . . , yn, η1 . . . , ηn satisfy{xj, yk} − {xk, yj} = 0, {ξj, ηk} −
{ξk, ηj} = 0, {ξj, yk} − {xk, ηj} = 0, wherexj = σ(x̂

(1)
j ) = σ(x̂

(2)
j ), ξj = σ(ξ̂

(1)
j ) =

σ(ξ̂
(2)
j ). Equivalently, the differential formα = ∑

j yj dxj + ηj dξj is closed. By the
Poincaré lemma there existsf ∈ C∞M such that df = α, equivalentlyyj = {ξj, f }, and
ηj = {f, xk}.

There existsBm+1 ∈ C∞M such that

exp(t · ad(Bm+1)) = exp(ad(tm+1f )) ◦ exp(t · ad(Bm))

andBm+1 = Bm modtm+1. The limitB = limm→∞Bm exists and satisfies the conclusions
of the proposition. �

Proposition 6.2. Let [·, ·] be a deformation of a Poisson bracket {·, ·} on M and Ot a
t-adically complete submodule in C∞M [[ t]] being a commutative Lie subalgebra with respect
to [·, ·]. Let functions xi ∈ O0, ξi ∈ C∞M form Darboux coordinates with respect to {·, ·} on
a contractible open set U ⊂ M. Then, there exist their lifts x̂i ∈ Ot , ξ̂i ∈ C∞M [[ t]] on U

which are Darboux coordinates with respect to [·, ·].

Proof. Since, by definition,Ot → σ(Ot) is surjective, we choose arbitrary liftsx̂j ∈ Ot of
xj. Note thatx̂j, ξj satisfy the both conclusions modulot.

Let x̂j,1 := x̂j, ξ̂j,1 := ξj. Suppose thatm ≥ 2 and x̂j ∈ Ot , ξ̂j,m ∈ C∞M [[ t]] satis-
fies the conclusion of the proposition modulotm+1. The assumption onxj,m, ξj,m implies
that

[x̂j, x̂k] = 0, [ξ̂j,m, x̂k] = δjk + yjkt
m+1 modtm+2,

[ξ̂j, ξ̂k] = tm+1zjk modtm+2
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for suitableyjk, zjk ∈ C∞M . The Jacobi identity and the commutation relations forxj, ξj
imply that

{yjk, xl} − {yjl, xk} = 0, {zlj, xk} + {ξj, ylk} − {ξl, yjk} = 0,

{zjk, ξl} + {zkl, ξj} + {zlj, ξk} = 0.

These identities say that the differential form

α = yjk dxj ∧ dξk + zjk dxj ∧ dxk

is closed.
By the Poincaré lemma there exists a 1-formβ = ∑

ai dξi +∑
bi dxi onU such that

dβ = α.
Note that{xk, ai} = 0 for all pairsi, k, sinceα contains no terms of the formf dξi ∧ dξk.

Hence,ai ∈ σ(Ot). Let âi be a lift ofai in Ot .
It is easy to check thatx̂i,m+1 = xi,m+ tm+1âi andξ̂i,m+1+ tm+1bi satisfy the conclusions

of the proposition modulotm+2. Hence, the limitŝxi = limm→∞x̂i,m, ξ̂i = limm→∞ξ̂i,m
exist and satisfy the conclusions of the proposition. �

We will need a more strong assertion.

Proposition 6.3. Let [·, ·] be a deformation of a Poisson bracket {·, ·} on M and Ot a
t-regular submodule in C∞M [[ t]], which is a commutative Lie subalgebra with respect to
[·, ·]. Let functions xi ∈ Ot , ξi ∈ C∞M [[ t]] form Darboux coordinates modulo tk, k > 0, with
respect to [·, ·] on a contractible open set U ⊂ M. Then, there exist functions ai ∈ Ot ,
bi ∈ C∞M [[ t]] on U such that the functions xi + tkai, ξi + tkbi form Darboux coordinates
with respect to [·, ·].

Proof. The same as ofProposition 6.2. �

7. Deformation quantization on a polarized symplectic manifold

7.1. Deformation quantization

Let us recall some definitions and facts about the DQ on a smooth manifoldM, see
[2,9,11].

Definition 7.1.

(a) Let C∞M be the sheaf of smooth complex valued functions onM. A formal deforma-
tion of C∞M is a sheaf ofC[[ t]]-algebras,At , with an epimorphismσ : At → C∞M of
C[[ t]]-algebras (called thesymbol map) satisfying the condition: there exists an isomor-
phism ofC[[ t]]-modulesAt → C∞M [[ t]] commuting with symbol maps. (Recall that the
symbol mapσ : C∞M [[ t]] → C∞M takesf0 + tf1 + · · · to f0.)
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(b) Two formal deformationsAt1 andAt2 of C∞M are equivalent if there exists a map of
sheaves ofC[[ t]]-algebrasAt1 → At2, commuting with symbol maps.

SupposeAt is a formal deformation ofC∞M . The formula

{a, b} = σ

(
1

t
[ã, b̃]

)
, (7.1)

wherea andb are locally defined functions onM andã, b̃ are their lifts with respect toσ,
gives a well-defined Poisson bracket onC∞M . It is clear that equivalent formal deformations
have the same Poisson bracket.

Definition 7.2. A DQ on a symplectic manifold(M,ω) is a formal deformation ofC∞M
whose Poisson bracket is equal toω−1.

Definition 7.3.

(a) An SP on(M,ω) is the structure of an associative algebra on the sheafC∞M [[ t]] with the
multiplication of the form

f ∗ g =
∑
i≥0

tiµi(f, g), f, g ∈ C∞M, (7.2)

where allµi, i > 0, are bidifferential operators onM vanishing on constants, i.e.
µi(f, g) = 0 if f or g is a constant,µ0(f, g) = fg, andµ1(f, g) − µ1(g, f ) = {f, g},
the Poisson bracket inverse toω.

(b) Two SPs(C∞M [[ t]] , µ′) and(C∞M [[ t]] , µ′′) on(M,ω) are equivalent if there exists a power
seriesB = 1 + tB1 + · · · , whereBi are differential operators vanishing on constants,
such thatµ′′(f, g) = Bµ′(B−1f,B−1g).

It is clear that any SP(C∞M [[ t]] , µ) defines a DQ with the natural symbol mapC∞M [[ t]] →
C∞M , f0 + tf1 + · · · �→ f0.

Proposition 7.4. The above assignment gives a one-to-one correspondence between the
equivalence classes of SPs and DQs.

Proof. LetAt be a DQ. Let us prove that it is equivalent to an SP. By definition of DQ, there
exists an isomorphism ofC[[ t]]-modulesC∞M [[ t]] → At commuting with symbol maps. Let
µ = µ0 + tµ1 + · · · be the multiplication in the sheafC∞M [[ t]] being the pullback of the
multiplication inAt . In order to prove that eachµi is a bidifferential operator it is enough
to prove, according to the Peetre theorem, that supp(µ(f, g)) ⊂ supp(f )∩ supp(g) for any
functionsf andg onM. But this is obvious because if, for example,f = 0 on an open set
U, thenµ(f, g) = 0 onU, sinceµ is a map of sheaves. The same argument proves that two
equivalent DQs correspond to equivalent SPs. �

Example 7.5 (Moyal–Weyl SP). LetU be an open set in a symplectic manifold(M,ω),
in which there exist Darboux coordinates,xi, yi, i = 1, . . . , (1/2)dimM, so thatω =
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i dyi ∧ dxi. Then,ω−1 = ∑

i ∂/∂yi ∧ ∂/∂xi and for f, g ∈ C∞
U the multiplication

formula

f ⊗ g �→ mexp

(
t

2

∑
i

(∂/∂yi ⊗ ∂/∂xi − ∂/∂xi ⊗ ∂/∂yi)

)
(f ⊗ g), (7.3)

wherem is the usual multiplication of functions, defines an SP on(U, ω). This SP is called
the Moyal–Weyl SP.

The following statement is well-known, see for example[17].

Proposition 7.6. Locally, any SP on (M,ω) is equivalent to the Moyal–Weyl SP.

7.2. Polarized DQ

Definition 7.7.

(a) A PDQ on a PSM(M,ω,P) is a pair(At ,Ot) whereAt is a DQ on(M,ω) andOt is a
t-adically complete commutative subalgebra inAt such thatσ(Ot) = OP, the sheaf of
functions constant alongP.

(b) Two PDQs(At1,Ot1) and (At2,Ot2) of (M,ω,P) are equivalent if there exists an
equivalence map of DQsAt1 → At2 which takesOt1 to Ot2.

Since any DQ is equivalent to an SP, any PDQ is equivalent to a triple(C∞M [[ t]] , µt,Ot),
where(C∞M [[ t]] , µt) is an SP andOt is a commutative subalgebra in(C∞M [[ t]] , µt).

Proposition 7.8. Let (At ,Ot) be a PDQ. Then,

(a) Ot is a maximal commutative subalgebra in At ;
(b) Ot is a t-regular subalgebra in At .

Proof.

(a) Locally, the bracket [a, b] = (1/t)(ab − ba), a, b ∈ At , is a deformation of the Poisson
bracketω−1. Hence, the statement easily follows from Proposition 3.4.

(b) Follows from (a). �

The following definition will play an auxiliary role in the paper.

Definition 7.9. A weakly PSP (wPSP) on a PSM(M,ω,P) is a triple(C∞M [[ t]] , µt,Ot),
where (C∞M [[ t]] , µt) is an SP,Ot is a t-adically completeC[[ t]]-submodule inC∞M [[ t]]
satisfying the conditions:

(a) σ(Ot) = OP;
(b) Ot is a commutative subalgebra inC∞M [[ t]] with respect to the usual multiplication in
C∞M [[ t]];

(c) µt being restricted toOt coincides with the usual multiplication.
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Definition 7.10. We say that a wPSP(C∞M [[ t]] , µt,Ot) is a PSP, if for anya ∈ Ot , b ∈
C∞M [[ t]] the productµt(a, b) coincides with the usual product inC∞M [[ t]].

Thus, both wPSP and PSP are particular cases of a PDQ. We are going to prove that, in
fact, any PDQ is equivalent to a PSP. But first we prove the following lemma.

Lemma 7.11. Any PDQ is equivalent to a wPSP.

Proof. Since any DQ is equivalent to an SP, it is enough to prove the following. LetOt be a
commutative subalgebra in an SP(C∞M [[ t]] , µt) such that the triple(C∞M [[ t]] , µ,Ot) forms
a PDQ, in particular,µt(a, b) = µt(b, a) for a, b ∈ Ot . Then, there exists a differential
operatorDt = 1+ tD1+· · · onM such that the multiplicatioñµt(f, g) = D−1

t µ(Dtf,Dtg)

being restricted toD−1
t Ot is the usual multiplication.

Supposeµt being restricted toOt coincides with the usual multiplication modulotn.
Then,µ(a, b) = ab + tnν(a, b)modtn for a, b ∈ Ot . It follows from Proposition 7.8
(b) that being considered modulot, the bilinear formν defines a Hochschild cocyclēν ∈
Γ(M,D2(OP, C

∞
M)) (seeProposition 2.5).

Sinceν̄ is commutative, it follows fromProposition 2.5that it is a coboundary. Therefore,
there exists a differential operatorD̄ ∈ Γ(M,D1(OP, C

∞
M)) such that dHochD̄ = ν̄.

Let D̃ be a lift of D̄ to a differential operator onM. Let Dn = 1 + tnD̃. It is easy
to see thatD−1

n Ot is a commutative subalgebra in the SP(C∞M [[ t]] , µ̃t) with µ̃t(a, b) =
D−1

n µt(Dna,Dnb), andµ̃t(a, b) = ab modulotn+1 for a, b ∈ D−1
n Ot .

By induction, we construct such differential operatorsDn for all n. Let D = Π∞
n=1Dn,

O′
t = D−1Ot , andµ′

t(a, b) = D−1µt(Da,Db). ThenD gives an isomorphism between
PDQs(C∞M [[ t]] , µt,Ot)and(C∞M [[ t]] , µ′

t ,O
′
t), and the second triple is a wPSP, which proves

the proposition. �

Proposition 7.12. For any wPSP (C∞M [[ t]] , µt,Ot), there exists a differential operator
D = 1 + tD1 + · · · on M such that Df = f for f ∈ Ot and the multiplication µ′

t(a, b) =
D−1µt(Da,Db) defines a PSP (C∞M [[ t]] , µ′

t ,Ot).

Proof. It is obvious thatµ = µt defines a PSP modulot. Proceeding by induction, we
assume that there exists a wPSP multiplicationµ′ equivalent toµ and being a PSP modulo
tn with respect toPt . The proposition will be proved if we find a differential operator,Dn,
such thatDn(f ) = 0 for all f ∈ O0 and the multiplication

µ′′(a, b) = D−1µ′(Da,Db), (7.4)

whereD = 1 + tnDn defines a PSP modulotn+1 with respect toPt .
Let

µ′ = µ0 + tµ′
1 + · · · + tn−1µ′

n−1 + tnν modtn+1.

By our assumption, elementsµ′
1, . . . , µ

′
n−1 are strongly polarized andν is polarized with re-

spect toOt (see the definition beforeProposition 2.4). It follows from associativity ofµ′ that

dHochν(a, b, c) =
∑

i+j=n

(µ′
i(a, µ

′
j(b, c)) − µ′

i(µ
′
j(a, b), c)).
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It is easy to check that each term in the right hand side is strongly polarized, since allµ′
i,

i = 1, . . . , n − 1, are such. Therefore,ν satisfies the hypothesis ofProposition 2.4. Hence,
there exists a polarized differential operatorDn such thatν+dHochDn is a strongly polarized
bidifferential operator. It is obvious that the multiplicationµ′′ defined in(7.4)with Dn just
constructed is as required. �

Corollary 7.13. Any PDQ is equivalent to a PSP.

Proof. Follows fromLemma 7.11andProposition 7.12. �

Proposition 7.14.

(a) Let (C∞M [[ t]] , µt,Ot) be a PSP on (M,ω,P). Let Pt = (dOt)
⊥. Then,Pt is a deforma-

tion of P and Ot = OPt .
(b) Let (C∞M [[ t]] , µ̃t, Õt) be another PSP on (M,ω,P) equivalent to (C∞M [[ t]] , µt,Ot)

as a PDQ. Then, there exists a formal automorphism of M which takes Pt to P̃t =
(dÕt)

⊥.
(c) Let (C∞M [[ t]] , µt,Ot) and (C∞M [[ t]] , µ̃t,Ot) are two equivalent PSPs with the sameOt .

Let D = 1 + tD1 + · · · gives an equivalence. Then, there exists a decomposition,
D = D′etX, where D′ is a differential operator identical onOt and X is a formal vector
field on M taking Ot to itself.

Proof.

(a) Follows fromProposition 4.4.
(b) Let us putX0 = 0. Then the automorphismetX0 = Id takesPt to P̃t modulo t.

Suppose we have constructed a formal vector fieldXk such that the formal auto-
morphismetXk−1 of M takesPt to P̃t modulo tk. Then, replacingPt by etXk−1Pt

we may assume thatPt andP̃t coincide modulotk. The proposition will be proved,
if we show that it is possible to find a vector fieldY such thatet

kY takesPt to P̃t

modulotk+1.
Since, by our assumption, the SPs(C∞M [[ t]] , µt) and (C∞M [[ t]] , µ̃t) are equivalent

and coincide modulotk, there exists a differential operator 1+ tkDk realizing that
equivalence. Since 1+ tkDk takesOt to Õt and on the both of these subalgebras the
respecting multiplicationsµt andµ̃t are trivial,Dk being restricted toO0 is a derivation
fromO0 to C∞M . LetY be an extension of that restrictedDk to a derivation onC∞M . It is

clear thatet
kY takesPt to P̃t modulotk+1.

(c) The operatorD being restricted toOt is a formal automorphism ofOt . Since formal
automorphisms form a pro-unipotent group, there existsX′ ∈ Der(Ot)such thatDbeing
restricted toOt is equal toetX′

. Let X ∈ Der(C∞M) be a lift ofX′. We putD′ = De−tX

which is obviously identical onOt . �

Example 7.15 (Moyal–Wick PSP). Let(M,ω,P) be a PSM. LetU be an open set inM
where there exist Darboux coordinates,xi, yi, (dxi)⊥ = P, i = 1, . . . , (1/2)dimM, so that
ω = ∑

i dyi ∧ dxi. Then,ω−1 = ∑
i ∂/∂yi ∧ ∂/∂xi and forf, g ∈ C∞

U the multiplication
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formula

f ⊗ g �→ mexp

(
t
∑
i

∂/∂yi ⊗ ∂/∂xi

)
(f ⊗ g), (7.5)

wherem is the usual multiplication of functions, defines a PSP on(U, ω,P). This PSP is
called the Moyal–Wick PSP.

Note that the functionsai, fi satisfying the Darboux relations with respect to the Pois-
son bracketω−1 also satisfy the Darboux relations with respect to the deformed bracket
(1/t)[·, ·], where [·, ·] is the commutator of the Moyal–Wick PSP.

Let us remark that the Moyal–Weyl SP fromExample 7.5constructed with help of the
same Darboux coordinates gives just a wPSP but not a PSP.

Proposition 7.16. Locally, any PSP on (M,ω,P) is equivalent to the Moyal–Wick PSP.

Proof. Let us prove that any two PSPs are locally equivalent. Since any SPs are lo-
cally equivalent, we may suppose that there are given two PSPs,(C∞M [[ t]] , µt,Ot) and
(C∞M [[ t]] , µt, Õt), on (M,ω,P) with the same multiplication and different polarizations,
and we have to prove that they are, locally, equivalent. Letxi, yi are Darboux coordinates
with respect toω such that(dxi)⊥ = P. By Proposition 6.2, there exist their liftsxit,
yit andx′

it, y
′
it which satisfy the Darboux relations with respect to the bracket [a, b] =

(1/t)(µt(a, b) − µt(b, a)), andxit ∈ Ot , x′
it ∈ Õt . By Proposition 6.1, there exists, locally,

an inner automorphism of the SP(C∞M [[ t]] , µt) that takesxit, yit to x′
it, y

′
it. It follows that

this automorphism takesOt to Õt . �

8. Characteristic classes of PDQs and PSPs

8.1. Extension class associated with a PDQ

Let (At ,Ot) be a PDQ on a PSM(M,ω,P). Since any PDQ is equivalent to a PSP, the
sheafOt is isomorphic toOPt for some deformed distributionPt . Thus, the sheaves Der(Ot)

andΩ1cl
Ot

are well defined (seeSection 2). Let

F(At ,Ot) = {b ∈ At; [b,Ot ] ⊂ Ot}, (8.1)

where [·, ·] denotes the commutator inAt . It is clear thatF(At ,Ot) is a sheaf of Lie alge-
bras with the bracket(1/t)[·, ·] and the centerOt . Moreover, any elementb ∈ F(At ,Ot)

determines the derivation(1/t)[b, ·] of Ot and, due toProposition 6.2, this correspondence
defines an epimorphismσ : F(At ,Ot) → Der(Ot).

We considerF(At ,Ot) as a leftOt-module with respect to multiplication inAt . As a Lie
algebra sheaf,F(At ,Ot) is an extension of Der(Ot).

Thus, we have the following exact sequence of Lie algebras andOt-modules:

0 → Ot
ι→F(At ,Ot)

σ→Der(Ot) → 0. (8.2)
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According to the terminology of Beilinson and co-workers[3,4], F(At ,Ot) is called an
Ot-extension of Der(Ot).

We say that a map of Lie algebras andOt-modules,s : Der(Ot) → F(At), given on an
open set ofM is a splitting of(8.2), if sσ = id. Since(At ,Ot) can be realized as a PSP
and, locally, there exist Darboux coordinates with respect to(1/t)[·, ·], the sequence(8.2)
locally splits (see the next subsection, where splittings are presented with help of Darboux
coordinates).

Lemma 8.1. Let s and s′ are two splittings of (8.2)over an open set ofM.Then, s−s′ ∈ Ω1cl
Ot

.

Proof. Direct calculation. �

Let us define an extension class of(8.1) in the following way. Let{Uα} be an open
covering ofM such that over eachUα there is a splitting,sα, of F(At ,Ot). By Lemma 8.1,
fα,β = sβ − sα is a section ofΩ1cl

Ot
overUα ∩Uβ. We define clExt(F(At ,Ot)) as the element

of H1(M,Ω1cl
Ot

) represented by the collection{fα,β}. One can prove that givenOt , the
extension class clExt(F(At ,Ot)) determines aOt-extension of Der(Ot) up to equivalence.

We will denote the element clExt(F(At ,Ot)) by clExt(At ,Ot) and call it theextension
class of the PDQ(At ,Ot).

In the next subsection, the extension class of a PSP,(C∞M [[ t]] , µt,Ot), will be represented
as an element ofΓ(M, dP⊥

t )/d(Γ(M,P⊥
t )), Pt = POt , with the help of a characteristic

2-form associated with that PSP.

8.2. Characteristic 2-form associated with a PSP

Let (C∞M [[ t]] , µt,Ot) be a PSP that we denote for shortness by(µt,Ot). We denotePt =
POt . Then the extensionF(µt,Ot) coincides as a leftOt-module with anOt-submodule of
C∞M [[ t]] with respect to the usual multiplication inC∞M [[ t]]. In this case, the local splittings
of F(µt,Ot) are differential forms of HomOt (Der(Ot), C

∞
M [[ t]]) = P⊥. These forms can

be described explicitly by Darboux coordinates.
Let {Uα} be an open covering ofM such that eachUα has Darboux coordinatesxαi, yαi,

xαi ∈ Ot , i = 1, . . . , n, with respect to the bracket [a, b] = (1/t)(µt(a, b) − µt(b, a)) (in
particular, [yαi, xαj] = δij). By Proposition 6.2such a covering exists. Then, onUα, the
Ot-submoduleF(µt,Ot) ⊂ C∞M [[ t]] is equal toOt ⊕Otyα1 ⊕ · · · ⊕Otyαn.

Splittingssα may be taken by the conditionxαi �→ yαi, and the corresponding forms are

sα =
∑
i

yαi dxαi. (8.3)

By Lemma 8.1, dsα = dsβ onUα ∩ Uβ. Therefore, formssα define the global 2-form

ωt ∈ ω0 + tΓ(M, dP⊥
t ), ωt = dsα =

∑
i

dyαi ∧ dxαi. (8.4)

Lemma 8.2. This form represents the extension class clExt(µt,Ot) by the isomorphism
(2.8).
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Proof. Clear. �

Lemma 8.1shows that if we take other splittings ofF(µt,Ot), the procedure above gives the
same formωt . Therefore, in the case of PSP, it is well defined not only the class clExt(µt,Ot)

but also its representative inω0 + tΓ(M, dP⊥
t ) that we call thecharacteristic 2-form of the

PSP and denote it by clPSP(µt,Ot).
Given an SP(C∞M [[ t]] , µt), let us set [a, b]µt = (1/t)(µt(a, b)−µt(b, a)),a, b ∈ C∞M [[ t]].

The bracket [, ]µt is a deformation of the initial Poisson bracket onM.

Proposition 8.3. Let (µt,Ot), (µ̃t,Ot) be PSPs with the same Ot . Then, clPSP(µt,Ot) =
clPSP(µ̃t,Ot) if and only if [, ]µt = [, ]µ̃t

.

Proof. If clPSP(µt,Ot) = clPSP(µ̃t,Ot), then forms(8.3)can be taken to be the same. This
implies that there exist common Darboux coordinates with respect to [, ]µt and [, ]µ̃t

. �

Proposition 8.4. Let (µt,Ot), (µ̃t,Ot) be two PSPs with the same Ot . Let Pt = POt

and ΓPt denote the module of global sections of Pt . Then, the 2-forms clPSP(µt,Ot),
clPSP(µ̃t,Ot) are lying on the same orbit of etΓPt if and only if there exists a formal differ-
ential operator D = 1 + tD1 + · · · identical on Ot such that µ̃t(a, b) = D−1µt(Da,Db).

Proof. Let us denoteωt = clPSP(µt,Ot), ω̃t = clPSP(µ̃t,Ot). Assume suchD exists. Let
sα be forms from(8.3) corresponding to(µt,Ot). Let s̃α be forms obtained fromsα by
applyingD. Lemmas 8.1 and 2.6imply that there existfα,β ∈ Ot on Uα ∩ Uβ such that
sα − sβ = dfα,β. SinceD acts onOt trivially, one has̃sα − s̃β = dfα,β, too. This means that
s̃α − sα does not depend onα and give a global form,b, of P⊥

t . Sinceωt = dsα, ω̃t = ds̃α,
one has̃ωt = ωt + db. By Lemma 4.6, there exists a formal automorphism,etY, Y ∈ ΓPt ,
takingωt to ω̃t .

Conversely, let us suppose thatωt andω̃t are lying on the same orbit ofetΓPt . Assume that
we have found a differential operator identical onOt which transforms̃µt to a multiplication
µ̃′
t that is equal toµt modulotk, i.e.

µ̃′
t − µt = tkν + · · · . (8.5)

By the previous part of the proof, the corresponding formω̃′
t is also lying on the same orbit as

ωt . The proposition will be proved if we find a differential operator 1+ tkDk, Dk(Ot) = 0,
which transforms̃µ′

t to µt modulotk+1. Let us prove that.
Sinceµ̃′

t = µt modtk, we can choose, byProposition 6.3, systems of Darboux coordinates
with respect to [, ]µ̃′

t
and [, ]µt that coincides modulotk. It follows that ω̃′

t = ωt mod tk.

Hence, there is a formal automorphismet
kX, X ∈ Pt , which takesω̃′

t to ωt . Applying et
kX

to µ̃′
t , we obtain a multiplication that is still equal toµt modulotk but whose characteristic

form is equal toωt . Thus, we come to the situation when the multiplicationsµ̃′
t andµt have

the same characteristic formωt .
By Proposition 8.3, µ̃′

t andµt have the same commutator. This implies that bidifferential
operatorν in (8.5) is commutative. Moreover, it is a Hochschild strongly polarized cocy-
cle (seeSection 2). Therefore, there exists a polarized differential operatorDk such that
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dHochD = ν. It follows that transformation 1+ tkDk applying toµ̃′
t gives a multiplication

equal toµt modulotk+1 and identical onOt . �

8.3. Characteristic pairs for PSPs and PDQs

Let (M,ω,P) be a PSM. Let us denote by Aut(M) the group of formal automorphisms
of M and byY = Y(M,ω,P) the set of pairs(ωt,Pt), whereωt = ω0 + tω1 + · · · is a
formal symplectic form being a deformation ofω = ω0 andPt is a polarization ofωt being
a deformation ofP. The group Aut(M) naturally acts onY.

It is natural to assign to a PSP(µt,Ot) on (M,ω,P) a pair(ωt,Pt) ∈ Y, whereωt =
clPSP(µt,Ot) andPt = POt . Hence, we obtain the map

τ : {PSPs} → Y.

Proposition 8.5. Two PSPs (µt,Ot) and (µ̃t, Õt) are equivalent if and only if τ(µt,Ot)

and τ(µ̃t, Õt) are lying on the same orbit in Y under the Aut(M)-action.

Proof. Let (µt,Ot) and(µ̃t, Õt) be equivalent. Let us prove that the pairsτ(µt,Ot) and
τ(µ̃t, Õt) are lying on the same orbit. ByProposition 7.14(b) and (c), one can find a formal
automorphism ofM such that after its applying we come to the situation when(µ̃t, Õt) turns
into a PSP,(µ̃t,Ot), with the sameOt as in(µt,Ot) and the equivalence morphism from
(µt,Ot) to (µ̃t,Ot) is given by a differential operator identical onOt . Now the statement
follows fromProposition 8.4.

Conversely, suppose that for(µt,Ot) and (µ̃t, Õt) the corresponding pairs(ωt,Pt),
(ω̃t, P̃t) lie on the same orbit. Let us prove that those PSPs are equivalent. LetB be a formal
automorphism ofM taking P̃t to Pt . Applying B to (µ̃t, Õt), we come to the case when
P̃t = Pt . Therefore, we may suppose that(ω̃t, P̃t) = (ω̃t,Pt). Since the pairs(ωt,Pt),
(ω̃t,Pt) lie on the same orbit, there existsX ∈ ΓPt such that̃ωt = etXωt . Now the statement
follows fromProposition 8.4. �

Let us denote by [Y] the set of orbits inY = Y(M,ω,P).

Corollary 8.6. The map τ induces the embedding

τ̄ : {classes of PDQs} → [Y].

Proof. Let (At ,Ot) be a PDQ on(M,ω,P). Then, byCorollary 7.13, there exists a PSP,
(µt,Ot), equivalent to(At ,Ot). We putτ̄(At ,Ot) = [τ(µt,Ot)], the orbit passing through
the pairτ(µt,Ot). By Propositions 7.14 and 8.5, this map is correctly defined, i.e. does not
depend on the choice of a PSP equivalent to(At ,Ot). Proposition 8.5also shows that being
descended to equivalence classes of PDQs clPSPQ is embedding. �

In the next section, we will prove that any element ofY is equal toτ(µt,Ot) for a PSP
(µt,Ot), which implies that the map̄τ is, in fact, an isomorphism.
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9. Existence of PDQs and relation between the extension and Fedosov classes of a
PDQ

Let (M,ω0) be a symplectic manifold. It is known that all equivalence classes of DQs
on M with the Poisson bracketω−1

0 can be obtained by the Fedosov method. According
to this method, starting with a symplectic connection, one constructs a flat connection,D

(called the Fedosov connection) on the Weyl algebra that we define as a quotient of the
tensor algebra over the cotangent bundle toM. A quantized algebra,At , is realized as the
subalgebra of flat sections in the Weyl algebra. The Weyl curvature ofD (see below), being
a closed scalar 2-form of the formθt = ω0 + tω1 + · · · , defines the Fedosov class

clF(At) = [θt ] ∈ [ω0] + tH2(M,C[[ t]]). (9.1)

It is also known that the correspondenceAt �→ clF(At) is a bijection between the set of
equivalence classes of DQs on(M,ω0) and the set [ω0] + tH2(M,C[[ t]]) [11,18,23].

Let (M,ω,P) be a PSM and(ωt,Pt) ∈ Y(M,ω,P) a deformation of the pair(ω,P),
seeSection 8.3. We adapt the Fedosov method to construct a PSP,(µt,Ot), such that
τ(µt,Ot) = (ωt,Pt). We start with aPt-symplectic connection,∇, and construct the
Fedosov connection on the same Weyl algebra. We will see that by realizing the Fedosov
scheme in presence of a polarization, the formωt appears as a so-called Wick curvature
of the Fedosov connection. Moreover,ωt differs from the Weyl curvature of that Fedosov
connection by the form(t/2) tr(∇2|Pt ).

9.1. Some notations

Let E be a formal vector bundle overM, i.e. a freeC∞M [[ t]]-module of finite rank over
M. Denote byT k(E) thekth tensor power ofE overC∞M [[ t]] and byT(E) the corresponding
tensor algebra completed in the{E, t}-adic topology. Similarly, we define the completed
symmetric algebraS(E). For a subbundleP of E, we denote by symP : S(P) → T(E) the
natural embedding ofC∞M [[ t]]-modules defined by symmetrization.

Let Λ(E) be the exterior algebra ofE overC∞M [[ t]]. We will considerT(E) ⊗ Λ(E) as a
graded super-algebra regarding a sectionx ∈ T(E) ⊗ Λk(E) of degreek even (odd) ifk is
even (odd).

Denote byδT(E) the continuousC∞M [[ t]]-linear derivation ofT(E) ⊗ Λ(E) defined by the
mapT 1(E)⊗ 1 → 1⊗Λ1(E), v⊗ 1 �→ 1⊗ v, v ∈ E. It is clear thatδT(E) is a derivation of
degree 1 andδ2

T(E) = 0. It is easy to see that for any subbundleP ⊂ E, the mapδT(E) being
restricted toS(P)⊗Λ(P) via the embedding symP ⊗ idP gives a derivation of the algebra
S(P) ⊗ Λ(P); we denote it byδP.

On the algebraS(P) ⊗ Λ(P), there is another derivation,δ∗P, of degree−1 generated by
the map 1⊗Λ1(P) → S1(P)⊗ 1, 1⊗ v → v⊗ 1,v ∈ P. It is easy to check that(δ∗P)

2 = 0
and [δP, δ∗P] = δPδ

∗
P + δ∗PδP = deg, where deg is the derivation assigning to an element

x ∈ Sp(P) ⊗ Λq(P) the element(p + q)x.
Let E be presented as a direct sum ofC∞M [[ t]]-submodules,E = P ⊕ Q. It is obvious

that the derivationsδP, δ∗P, δQ, δ∗Q induce derivations on the algebraS(P,Q) = (S(P) ⊗
S(Q))⊗ (Λ(P)⊗Λ(Q)) that we will identify in the natural way with the algebra(S(P)⊗
S(Q)) ⊗ Λ(E). We putδP,Q = δP + δQ andδ∗P,Q = δ∗P + δ∗Q.
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Let us define the operatorδ−1
P,Q on S(P,Q) in the following way. We putδ−1

P,Q(x) = 0

for x ∈ C∞M [[ t]] and δ−1
P,Q(x) = (1/(p + r + q)δ∗P,Q(x) for x ∈ (Sp(P) ⊗ Sr(Q)) ⊗ Λq(E),

p + r + q > 0. There is the obvious relation

δP,Qδ
−1
P,Q + δ−1

P,QδP,Q = projection onS+(P,Q)alongC∞M [[ t]] , (9.2)

whereS+(P,Q) is the closure of⊕p+r+q>0(S
p(P) ⊗ Sr(Q)) ⊗ Λq(E ).

One has the embedding

symP ⊗ symQ ⊗ id : (S(P) ⊗ S(Q)) ⊗ Λ(E ) → T(E ) ⊗ Λ(E ). (9.3)

It is clear thatδP,Q coincides with the restriction ofδT(E ) to S(P,Q) via this embedding.

9.2. The Fedosov algebra

Let ϕ : E⊗ E→ C∞M [[ t]] be aC∞M [[ t]]-linear skew-symmetric nondegenerate form andI

the closed ideal inT(E ) generated by relations

x ⊗ y − y ⊗ x = tϕ(x, y). (9.4)

We callW(E ) = T(E )/I the Weyl algebra andW = W(E ) = W ⊗ Λ(E ) the Fedosov
algebra overE. The derivationδT(E ) on T(E ) ⊗ Λ(E ) induces a derivation onW. Indeed,
δT(E ) applied to the both sides of(9.4)gives zero. We denote this derivation byδ.

Let E = P⊕Q be a decomposition intoC∞M [[ t]]-modules.
Define the Wick map,wP,Q, as the compositionS(P,Q) → T(E )⊗Λ(E ) → W, where

the first map is(9.3)and the second one is the projection. By the PBW theoremwP,Q is an
isomorphism ofC∞M [[ t]]-modules.

Due to the isomorphismwP,Q, the operatorsδP,Q andδ−1
P,Q are carried over fromS(P,Q)

to W. We retain for them the same notation. Note that whileδP,Q does not depend on the
decomposition ofE and coincides with the derivationδ induced fromT(E ) ⊗ Λ(E ), the
operatorδ−1

P,Q is not a derivation and does depend on the decomposition. In particular, one

can suppose that the decomposition is trivial,E = E⊕ 0. In this case we denoteδ−1
E = δ−1

E,0.

Proposition 9.1. One has

H(W, δ) = C∞M [[ t]] .

Moreover, if x ∈W(E ) ⊗ Λk>0(E ), then y = δ−1
P,Qx is such that δy = x for any decompo-

sition E = P⊕Q.

Proof. Follows from(9.2). �

9.3. Lie subalgebras inW

Let E = P ⊕ Q be a decomposition. We say thatx ∈ W haswP,Q-degree(p, q) if
w−1
P,Q(x) ∈ (Sp(P⊗ Sq(Q)) ⊗ Λ(E ). We say thatx ∈ W haswP,Q-degreek if w−1

P,Q(x) ∈
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⊕p+q=k(S
p(P) ⊗ Sq(Q)) ⊗ Λ(E ). We define thewE-degree as thewE,0-degree for the

trivial decompositionE = E⊕ 0.
Let g be a sheaf of Lie algebras acting onE. We call aC∞M [[ t]]-linear mapλ : g→W a

realization of g, if it is a Lie algebra morphism (W is considered as a Lie algebra with respect
to the commutator(1/t)[·, ·]) and for anyx ∈ g andv ∈ E one hasx(v) = (1/t)[λ(x), v].
It is easy to check that any two realizations differ by a Lie algebra morphism ofg to the
center ofW, therefore, ifg is a sheaf of semisimple Lie algebras, there is not more than one
realization ofg.

Denote bysp(E ) the sheaf of symplectic Lie algebras with respect toϕ. Sincesp(E ) is
semisimple, there is a unique realizationρE : sp(E ) → W. The image of this realization
consists of elements havingwE-degree 2.

Let E = P ⊕ Q be a decomposition into Lagrangian subsheaves. Denote bysp(P, E )
the subsheaf ofsp(E ) preservingP. It is easy to check thatsp(P, E ) can be realized as the
subset of elements ofW havingwP,Q-degree(1,1) or (2,0). Denote this realization by
ρP,E : sp(P, E ) →W. On the other hand,sp(P, E ) is realized inW by ρE.

Lemma 9.2. Let b ∈ sp(P, E ). Then

ρE(b) = ρP,E(b) + t

2
trace(b̄),

where b̄ is b restricted to P.

Proof. Direct computation using the fact thatρP,E(b̄) is the component ofρP,E(b) of
wP,Q-degree(1,1) in any decompositionE = P⊕Q. �

9.4. Filtrations onW

We define two decreasing filtrations onW numbered by nonnegative integers.
TheT -filtration FT• W is defined as follows. We ascribe to the elements ofE-degree 1

and tot-degree 2. ThenFT
nW consists of elements ofW having the leading term of total

degree≥ n.
TheP-filtration,FP• W, is firstly defined onS(P)⊗S(Q)by the subsetsFPn = ⊕i≥nS

i(P)⊗
S(Q), n = 0,1, . . . , and carried over toW via the Wick isomorphism.

We extend those filtrations toW in the natural way standing, for example,FT
n W =

FT
nW ⊗ Λ(E ). We will use the following mnemonic notation. To point out, for example,

that a sectionx ∈ W belongs toFT
n W we writeFT (x) ≥ n.

In the following we denoteS(P) = S(P)⊗Λ(E ) embedded inS(P,Q) as(S(P)⊗ 1)⊗
Λ(E ).

Proposition 9.3. Let E = P ⊕ Q be a decomposition of E into Lagrangian subsheaves.
Then

(a) The Wick map w = wP,Q : S(P,Q) → W has the following property: for a ∈ S(P)
and arbitrary c ∈ S(P,Q) one has w(ac) = w(a)w(c).

The filtrations on W have the properties:
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(b) for x, y ∈ W, if FP(x) ≥ k, then FP(xy) ≥ k;
(c) FP(δ−1

P,Qx) ≥ FP(x);

(d) FT (δ−1
P,Qx) > FT (x).

Proof. Clear. �

9.5. Fedosov’s construction in the Wick case

Let (M,ωt,Pt) be a formal PSM. We will write for shortnessω = ωt , P = Pt . Let us
denoteT = T CM [[ t]]. It is easy to prove that there exists onM a Lagrangian subbundle
Q ⊂ T such thatT = P⊕Q.

In the following, we setE = T ∗ and consider the Fedosov algebraW = W(E ) with
respect toϕ being the Poisson bracket inverse toω. The decompositionE = P⊥ ⊕Q⊥ is
Lagrangian with respect to thisϕ.

Let ∇ be aP-symplectic connection onM (seeSection 5). Then the induced connection
∇ : E→ E⊗ Λ1E onE preservesP⊥, i.e.∇(P⊥) ⊂ P⊥ ⊗ Λ1(E ), and is flat onP⊥ along
P, i.e. for anyX, Y ∈ P one has(∇X∇Y − ∇Y∇X − ∇[X,Y ])(P

⊥) = 0.
We will identify P with P⊥ andQ withQ⊥ by the isomorphismx �→ ω(x, ·) betweenT

andE. Thus, we allow us to writeE = P⊕Q.
The connection∇ gives a derivation of the Fedosov algebraW, which is an extension

of the de Rham differential on functions. Analogously,∇ gives derivations of the algebras
T(E )⊗Λ(E ), S(E )⊗Λ(E ), and(S(P)⊗ S(Q))⊗Λ(E ). These derivations commute with
the maps(9.3)andwP,Q.

For convenience, we will mark the elements of the Fedosov algebra lying inE ⊗ 1 by
letters with hat over them (x̂), while by dx we will denote the copy of̂x lying in 1 ⊗ Λ1E.

Letω = ωij dxi∧dxj in some local coordinates. It is easy to check that forδ̃ = ωijx̂i⊗dxj
one has

δ = 1

t
ad(δ̃), δ̃2 = tω. (9.5)

Since the torsion of∇ is equal to zero,

∇(δ̃) = 0. (9.6)

Since∇2 is aC∞M [[ t]]-linear derivation of degree 0 preservingP, there is an elementR ∈
ρP,E(sp(P, E )) ⊗ Λ2(E ) such that∇2 = (1/t)ad(R). In particular, one has to be

FP(R) ≥ 1. (9.7)

According to Fedosov[11], we also defineRF ∈ ρE(sp(P, E )) ⊗ Λ2(E ) satisfying∇2 =
(1/t)ad(RF). Equality(9.6) implies that

δ(R) = δ(RF) = 0. (9.8)

Following to Fedosov, we will consider connections onW of the form

D = ∇ + 1

t
ad(γ), γ ∈W⊗ Λ1(E ). (9.9)
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We define the Wick curvature ofD as

ΩD = R + ∇(γ) + 1

t
γ2.

According to Fedosov, we also define the Weyl (or Fedosov) curvature ofD as

ΩF
D = RF + ∇(γ) + 1

t
γ2. (9.10)

Since byLemma 9.2RF = R + (t/2) tr(∇2|P), we have

ΩF
D = ΩD + t

2
tr(∇2|P). (9.11)

One checks

D2 = 1

t
ad(ΩD) = 1

t
ad(ΩF

D). (9.12)

Let us takeγ in the form

γ = δ̃ + r, r ∈W⊗ Λ1(E ), FT (r) ≥ 3. (9.13)

Then the connectionD has the form

D = ∇ + δ + 1

t
ad(r). (9.14)

Using(9.5) and (9.6), we obtain that its Wick curvature is

ΩD = R + ∇(δ̃ + r) + 1

t
(δ̃ + r)2 = ω + δr + R + ∇r + 1

t
r2. (9.15)

Proposition 9.4. There exists an element r ∈W(E ) ⊗ Λ1(E ) such that

(a) FT (r) ≥ 3;
(b) FP(r) ≥ 1;
(c) the connection D = ∇ + δ + (1/t)ad(r) is flat, i.e.D2 = 0;
(d) for its Wick curvature one has

ΩD = ω;
(e) its Weyl curvature ΩF

D belongs to Γ(M, dP⊥) and there is the formula

ΩF
D = ω + t

2
tr(∇2|P). (9.16)

Proof. First of all, we apply the Fedosov method[11, Theorem 5.2.2], to findr satisfying
d). According to(9.15), r must obey the equation

δr = −
(
R + ∇r + 1

t
r2
)
. (9.17)
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Let us look forr being the limit of the sequence,r = lim rk, whererk ∈ W(E ) ⊗ Λ1(E ),
k = 3,4, . . . , andFT (rk − rk−1) ≥ k. As in Lemma 5.2.3 of[11], usingProposition 9.3
(d) and the fact thatFT (R) ≥ 2, suchrk can be calculated recursively:

r3 = −δ−1
P,Q(R), rk+3 = −

(
r3 + δ−1

P,Q

(
∇rk+2 + 1

t
r2
k+2

))
. (9.18)

Hence (a) and (d) are proved.
Let us prove thatFP(rk) ≥ 1 for all k. The inequalityFP(r3) ≥ 1 follows from the fact

thatFP(R) ≥ 1 and from Proposition(9.3) (c). Suppose thatFP(ri) ≥ 1 for i < k + 3,
k > 0. ThenFP(∇rk+2) ≥ 1 because∇ preservesP. On the other hand,FP(r2

k+2) ≥ 1
because of Proposition(9.3) (b), therefore, as follows from(9.18), FP(rk+3) ≥ 1 as well.
Hence,r being the limit of the convergent sequencerk satisfies the conditions (a), (b), and
(d) of the proposition.

(c) obviously follows from (d) and(9.12).
(e) follows immediately from (d),(9.11), andLemma 5.3. �

Proposition 9.5. Let ∇̃ be anotherP-symplectic connection on M. Let r̃ ∈W(E )⊗Λ1(E ),
satisfy the conclusions of Proposition 9.4, in particular, the connection D̃ = ∇̃ + δ +
(1/t)ad(r̃) is flat. Then, there exists an element B ∈W(E ) such that

(a) FT (B) ≥ 3;
(b) FP(B) ≥ 1;
(c) e(1/t)adBD = D̃.

Proof. Note that∇ − ∇̃ can be presented as(1/t)adR0, whereR0 ∈ ρP,E(sp(P, E )).
Therefore,FT (R0) ≥ 2 andFP(R0) ≥ 1. Let us putR1 = r − r̃. Then,FT (R1) ≥ 3 and
FP(R1) ≥ 1. We have

D̃ = D − 1

t
ad(R0 + R1).

SinceΩD = ΩD̃ = ω, using(9.6)we obtain

δ(R0) = 0.

It follows that the elementB0 = δ−1
P,Q(R0) is such thatδ(B0) = R0 andFT (B0) ≥ 3,

FP(B0) ≥ 1.
ReplacingD by e(1/t)adB0D, we obtain

D̃ = D − 1

t
ad(R′

0 + R′
1),

whereFT (R′
0) ≥ 3,FP(R′

0) ≥ 1 andFT (R′
1) ≥ 4,FP(R′

1) ≥ 1.
Proceeding by induction onFT -filtration, we obtain a sequenceBi ∈W(E ) with increas-

ing FT -filtration such thatΠ∞
i=0e

(1/t)adBi(D) = D̃.

Since elementse(1/t)adB′
, B′ ∈ W(E ), FT (B) ≥ 3, form a pro-unipotent Lie group,

there exists an elementB ∈ W(E ), FT (B) ≥ 3, FP(B) ≥ 1, such thatΠ∞
i=0e

(1/t)adBi =
e(1/t)adB. �
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Let D be a connection satisfyingProposition 9.4. Denote byWD the subsheaf ofW
consisting of flat sectionsa, i.e. such thatDa = 0. SinceD is a derivation ofW, it is clear
thatWD is a sheaf of subalgebras. Letσ = id − (δδ−1

P,Q + δ−1
P,Qδ). Then, as follows from

(9.2), σ : W → C∞M [[ t]] is a projection, whereC∞M [[ t]] is considered as the center of the
algebraW.

Proposition 9.6.

(a) The map σ :WD → C∞M [[ t]] is a bijection.
(b) The inverse map η : C∞M [[ t]] → WD has the form η(f ) = f + f̂ , there FT (f̂ ) >

FT (f ).
(c) If df ∈ P, then FP(f̂ ) ≥ 1.
(d) If df ∈ P, then σ(η(f )η(g)) = fg for any g ∈ C∞M [[ t]].

Proof. Again, we apply the Fedosov iteration procedure. According to[11], Theorem 5.2.4,
we look forη(f ) as a limit,η(f ) = lim ak, thereak ∈W can be calculated recursively:

a0 = f, ak+1 = a0 + δ−1
P,Q

(
∇ak + 1

t
adr(ak)

)
. (9.19)

Putf̂ = η(f )− a0. As in [11], Theorem 5.2.4, one proves that suchη(f ) andf̂ satisfy (a)
and (b). Now observe thata1 − a0 = δ−1

P,Q(1⊗ df ) and if df ∈ P, thenFP(a1 − a0) ≥ 1.

By induction, we conclude thatFP(ak − a0) ≥ 1 for all k ≥ 1. Therefore,FP(a− a0) ≥ 1
as well, which proves (c).

Let us prove (d). We haveη(f )η(g) = fη(g) + f̂ η(g). Since by (c)FP(f̂ ) ≥ 1,
FP(f̂ η(g)) ≥ 1 as well. It follows thatσ(f̂ η(g)) = 0 andσ(η(f )η(g)) = σ(fη(g)) = fg,
becauseσ is aC∞M [[ t]]-linear map andσ(η(g)) = g. �

9.6. Existence of PSPs

Let (M,ω,P) be a PSM. Recall that inSection 8.3we assigned to any PSP(µt,Ot) on
(M,ω,P) an elementτ(µt,Ot) ∈ Y(M,ω,P), which is a pair(ωt,Pt) being a deformation
of the pair(ω,P). The formωt represents the extension class clExt(µt,Ot).

We are going to show that any element ofY(M,ω,P) corresponds to a PSP.

Proposition 9.7.

(a) For any pair (ωt,Pt) ∈ Y(M,ω,P), there exists a PSP, (µt,Ot), such that

τ(µt,Ot) = (ωt,Pt). (9.20)

(b) The Fedosov class of the corresponding SP (C∞M [[ t]] , µt) is represented by the form of
ω + tΓ(M, d(P⊥

t )) equal to

θt = ωt + t

2
tr(∇2|Pt ), (9.21)

where ∇ is a Pt-symplectic connection on the formal symplectic manifold (M,ωt,Pt).
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Proof. Let W be the Fedosov algebra onM corresponding to the symplectic formωt . Let
∇ be aPt-symplectic connection onM corresponding toωt andD be the flat connection on
W constructed inProposition 9.4(c). LetWD be the sheaf of flat sections ofW. Define an
SP(C∞M [[ t]] , µt) onM carrying over the multiplication fromWD to C∞M [[ t]] via the mapσ
from Proposition 9.6. Point (d) of that proposition shows that, in fact, this SP presents the
PSP(C∞M [[ t]] , µt,OPt ). We are going to prove that this SP is as required. In the following
we identifyWD with the corresponding PSP viaσ.

Let us prove(9.20). Let (Uα) be an open covering ofM such that on eachUα there exist
formal Darboux coordinatesxαi, yαi, xαi ∈ OPt with respect toωt .

Denote by∇α the standard flatPt-symplectic connections overUα such that the forms
dxαi, dyαi are flat sections inP⊥

t . Then, the connectionsDα = ∇α+δ satisfy onUα the state-
ments (c)–(e) ofProposition 9.6. LetWDα be the SP onUα constructed inProposition 9.6
via flat sections ofDα. It is easy to see thatWDα coincides with the Moyal–Wick PSP with
respect to the Darboux coordinatesxαi, yαi (seeExample 7.15), so thatxαi, yαi are also
Darboux coordinates for the commutator(1/t)[·, ·] in WDα .

SinceDandDα have the same Wick curvatureωt , there exist, byProposition 9.5, elements
Bα ∈ W such thate(1/t)adBαDα = D. It is clear thate(1/t)adBα acting onW takesWDα to
WD, and point (b) of that Proposition implies that it is identical onOPt .

LetFα,β = e−(1/t)adBαe(1/t)adBβ . These may be considered as isomorphisms gluing SPs
WDα on Uα ∩ Uβ to a global SP onM. This global SP is obviously isomorphic toWD.
We see, that functionsxαi, yαi form local Darboux coordinates corresponding to that SP.
Therefore, the characteristic 2-form clPSP(WD) (seeSection 8.3) is locally represented as
dyαi ∧ dxαi. On the other hand, this form is equal toωt , since from very beginning the
functionsxαi, yαi was chosen as Darboux coordinates forωt . Hence,τ(WD) = (ωt,Pt).

(b) follows fromProposition 9.4(e) andLemma 5.3. �

10. The main theorem and corollaries

Let (M,ω,P) be a PSM. Denote byY the set of pairs(ωt,Pt), whereωt = ω+ tω1+· · ·
is a deformed symplectic form andPt , P0 = P, its polarization. Let Aut(M) be the group
of formal automorphisms ofM.

Theorem 10.1.

(a) The equivalence classes of PDQs on (M,ω,P) are in one-to-one correspondence with
the orbits in Y under the Aut(M)-action.

(b) Let the pair (ωt,Pt) be a point on the orbit corresponding to a PDQ (At ,Ot). Then,
(At ,Ot) is isomorphic to a PSP, (C∞M [[ t]] , µt,Ot), where Ot consists of functions
constant along Pt and the multiplication µt satisfies the condition

µt(f, g) = fg for f ∈ Ot , g ∈ C∞M [[ t]] .

(c) The form ωt represents the extension class clExt(At ,Ot) ∈ H1(M,Ω1cl
Ot

), associated
with (At ,Ot).
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(d) Under the hypothesis of (b), the Fedosov class of the DQ At can be represented by a
form θt that is a deformation of ω and polarized by Pt . It is defined by the formula

θt = ωt + t

2
tr(∇2|Pt ), (10.1)

where ∇ is a Pt-symplectic connection on the formal symplectic manifold (M,ωt,Pt).

Proof. Parts (a) and (b) follow fromProposition 8.5, Corollary 8.6, andProposition 9.7
(a). Part (c) follows fromLemma 8.2. Part (d) is the same asProposition 9.7(b). �

Remark 10.2. We have interpreted the formωt from (10.1) as a representative of the
extension class associated to a PDQ (seeSection 8). The form tr(∇2|Pt ) is the curvature
form of the connection induced by∇|Pt on the complex line bundle det(Pt). Actually,
det(Pt) can be presented as a lineOt-bundle, i.e. as a locally free sheaf ofOt-modules of
rank one. Indeed, det(Pt) = C∞M [[ t]] ⊗Ot L, whereL = Ωn

Ot
, n = (1/2)dimM. The form

−tr(∇2|Pt ), as well asminus curvature form of any other connection onL, can be interpreted
as a representative of the extension class of anOt-extension of Der(Ot) associated with
L. Indeed, letT̃L denote the sheaf ofOt-differential operators onL of order at most one.
Then T̃L is equipped with the leftOt-module structure and with the Lie bracket being
the commutator of differential operators. Moreover,T̃L represents in the natural way an
Ot-extension of Der(Ot). Splittings of this extension are flat connection onL. Let dα be
local flat connections onL on some open covering{Uα} of M. Then,dα − dβ are closed
1-forms ofΩ1

Ot
that form aČech cocycle. Hence, there exist smooth 1-formsfα ∈ P⊥

t such
thatdα − dβ = fα − fβ. Differential operatorsdα − fα form a global connection onL, ∇L,
with the curvature locally equal to−dfα. On the other hand, by definition (seeSection 8),
the extension class of̃TL is represented by the form dfα ∈ dP⊥

t , i.e. −∇2
L. Therefore,

projecting the equality(10.1)to Γ(M, dP⊥
t )/d(Γ(M,P⊥

t )), we obtain

[θt ] = clExt(µt,Ot) − t

2
clExt(T̃det(Pt )). (10.2)

Details are left to the reader.

Remark 10.3. Note that the form−(1/2π
√−1) tr(∇2|Pt ) represents the first Chern class

of P [15]. Therefore, projecting(10.1)to H2(M,C[[ t]]) we obtain the formula

[[θt ]] = [[ωt ]] − π
√−1tc1(P), (10.3)

where [[θt ]] and [[ωt ]] denote the corresponding classes inH2(M,C[[ t]]). It is easy to see
that after normalization of these classes and of the parametert as in[15,19], formula(10.3)
coincides with the analogous formula of those papers for the quantization with separation
of variables on Kähler manifolds.

Corollary 10.4. Let At be a DQ on (M,ω). Suppose its Fedosov class clF(At) is represented
by the form θt that has a polarizationPt . Then At can be extended to a PDQ (At ,Ot), where
Ot is isomorphic to OPt .
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Proof. Let∇ be aPt-symplectic connection on the formal symplectic manifold(M, θt,Pt).
Let (C∞M [[ t]] , µt,Ot) be a PSP such that

τ(C∞M [[ t]] , µt,Ot) =
(
θt − t

2
tr(∇2|Pt ),Pt

)
.

By (10.1), clF(C∞M [[ t]] , µt) = [θt ] = clF(At), therefore SPsAt and (C∞M [[ t]] , µt) are
equivalent. �

Remark 10.5. All constructions of the paper can be extended to the case whenM is a
formal manifold,Mλ, which isM endowed with the function sheafC∞

M [[λ]], λ a formal
parameter. A formal PSM is a triple,(Mλ, ωλ,Pλ), whereωλ is a formal symplectic form
onMλ andPλ its polarization. The above construction of a PSP applied to a formal PSM
(Mλ, ωλ,Pλ) gives the following proposition.

Proposition 10.6. Let (At ,Ot) be a PDQ and (ωt,Pt) an element on the orbit correspond-
ing to (At ,Ot). Suppose that the pair (ωλ,Pλ) obtains from the pair (ωt,Pt) by replacing
t with λ. Then, there exists on (Mλ, ωλ,Pλ) a PSP

(C∞
M [[λ]][[ t]] , µλ,t,Oλ,t)

such that (At ,Ot) is equivalent to the diagonal PSP (C∞
M [[ t]] , µt,t,Ot,t) obtained by the

substitution λ = t.
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geometry (Białowiėza, 1997), Rep. Math. Phys. 43 (1–2) (1999) 291–297.
[21] J.H. Rawnsley, Polarization and diagonal quantization, Trans. AMS 230 (1977) 235–255.
[22] N. Reshetikhin, M. Yakimov, Deformation quantization of Lagrangean fiber bundles, preprint, math/9907164.
[23] P. Xu, Fedosov’s�-products and quantum momentum maps, Commun. Math. Phys. 197 (1998) 167–197.


	Classification of polarized deformation quantizations
	Introduction
	Complex distributions
	The Kostant-Hochschild-Rosenberg theorem in presence of a distribution
	Differential operators in presence of a distribution
	Differential forms in presence of a distribution

	C-symplectic manifolds and their polarizations
	C-symplectic manifolds
	Polarization

	Deformations of a PSM
	Formal everything
	Local structure of deformed polarizations
	Action of formal automorphisms on a symplectic form

	Polarized symplectic connection and characteristic class of a PSM
	Polarized symplectic connection
	Characteristic class of a PSM

	Deformations of Poisson brackets
	Deformation quantization on a polarized symplectic manifold
	Deformation quantization
	Polarized DQ

	Characteristic classes of PDQs and PSPs
	Extension class associated with a PDQ
	Characteristic 2-form associated with a PSP
	Characteristic pairs for PSPs and PDQs

	Existence of PDQs and relation between the extension and Fedosov classes of a PDQ
	Some notations
	The Fedosov algebra
	Lie subalgebras in W
	Filtrations on W
	Fedosov's construction in the Wick case
	Existence of PSPs

	The main theorem and corollaries
	Acknowledgements
	References


